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N ote 

A Method of Time-Centering the 
Lagrangian Marker Particle Computation 

The method of computing the Marker particle positions in the Marker and Cell 
method which is presented in detail in Ref. [1] may be applied to the prediction of, 
for example, either the streamlines of  simulated steady flows or the pathlines of 
simulated unsteady flows. Where the streamlines or pathlines of such flows are 
curved, there is a strong tendency for the Marker particles to drift in such a way 
that the true streamlines or pathlines and those indicated by the Marker particles 
are not coincident. By substantially reducing the time step which is used in this 
standard particle trajectory calculation, such particle trajectory errors can be 
significantly reduced. Unfortunately, the computational costs involved in this 
method of reducing the trajectory errors are considerable. In this paper, attention 
will be directed to the examination of the source of such errors and their reduction 
by more efficient means. 

For simplicity, the ideas presented in this paper are illustrated in plane Cartesian 
coordinates, in which case the particle trajectory equations are 

dx/dt  = u(x, y) ,  (la) 

dy/dt  = v(x, y) .  (lb) 

The standard numerical analog of these equations is 

X n +  1 = X n -t-  a t ( u n ) ,  

y,+l = y ,  + 3t(v~), 

(2a) 

(2b) 

where (x n, y~) and (x ~+1, y~+l) are the coordinates of the particle position at the 
present (n) and the predicted (n + 3 0 respective locations. Typically, u ~ and v n are 
obtained from the discrete velocity field data with bilinear interpolation at the 
coordinate location (x ~, y~). 

The proposed discrete analog of Eqs. (1) is 

X "+1 = X" 57 (30 (u  n -~ u n + l ) / 2 ,  

y.+Z -- y,~ -k- (3t) (v" + v"+~)/2, 
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(3a) 

(3b) 
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where u n+l and v n+~ are the interpolated velocity components evaluated at (x, y),~+l. 
Equations (3) are implicit and as such require some special means for solution. 
A proposed means of solution is to rewrite Eqs. (3) in iterative form as 

xn+kl ~ = x n + 8t (u ,~ + U"+(k-1)lkm)/2, 

y~+klkm = yn _~_ 8t (V n + V~+(k-1)lkm)/2, 

(4a) 

(4b) 

where k is a count integer whose minimum value is one and whose maximum value 
is k~ .  km is the total number of  estimates which are used to approximate the 
predicted particle location. It has been found that this iterative scheme is convergent 
provided that 8t is restrained to less than or equal to the value which permits a 
particle to move a cell width or height in one time step. For  8t chosen in this 
region, this procedure may be used to approximate Eqs. (3) to any degree desired 
simply by a suitable choice of km�9 

In computing practice, Eqs. (4) and the equations for the bilinear particle 
velocity interpolation for u and v may be incorporated in that sequential order in 
a common Fortran DO loop which ranges from k = 1 to km where km is chosen 
among the numbers, two thru six. The choice for km depends upon the trade-off 
between minimizing the computational time which is expended and maximizing 
the accuracy which the user desires. 

One method of  analyzing the inherent errors associated with discrete approxi- 
mations of  continuous equations is to determine the size of  the neglected terms 
of  a Taylor expansion relative to the retained terms. The errors inherent in the 
approximations expressed by Eqs. (2) and (3) will be examined in this fashion, 
and a test problem is included to show the relative magnitude of various of  the 
neglected terms and the manner in which these influence the discrete solution. 

Equation (la) may be expressed with a truncated Taylor expansion to fourth 
order as 

o r  

x "+1 = x"  + (S t )u  m + (802/2 \( d(U)dt ] ~ + (803/6 \[d2(u)]'~dt 2 ] 

+ (304/24 ~ac~,|Suq,~ where m = n, (5) 
k d t  3 ! ' 

x n+l = x"  + at u m + (St/2)a/3 " ~\ld2(u'l m, k dt 2 ] where 

and where the operator is 

8 m 8( )m 

m = n + �89 (6) 
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An equation analogous to Eq. (5) for the y direction may be derived. The terms 
involving the operator derivatives are evaluated with centered difference 
expressions. The use of these discrete equations will be referred to as an explicit 
procedure for predicting the particle trajectory with accuracies which are referred 
to as first, second, third, and fourth order for the approximations including the 
terms through 3t, 3t 2, ~t 3, and 3t ~, respectively. Similarly, an equation analogous 
to Eq. (6) may be derived for the y direction (Eq. (lb)). The use of this equation in 
conjunction with Eq. (6) as approximated with the iterative scheme represented by 
Eqs. (4) and with centered approximations for the operator derivatives will be 
referred to as an implicit procedure for predicting the particle trajectory with 
accuracies which are referred to as second and fourth order for the approximation 
including the terms thru 3t and 3t ~, respectively. 

In order to illustrate the magnitude of the truncation errors in explicit and 
implicit procedures of various orders of accuracy, consider the following thought 
problem. A cluster of four adjoining square (3x = 3y) computational cells have a 
prescribed steady clockwise incompressible circulation. The exterior faces of the 
cells are impervious to flow and have the free slip boundary condition for the 
particle prediction calculations. The bottom left corner of the four-cell cluster is 
taken as the origin of the coordinate system in which x and y increase rightward 
and upward, respectively. The test particle location is defined initially at (~x, ~y/2) 
and the time step (~t) is defined as ~x/t u I = 3y/{ v I. Equations (4) predict particle 
locations of (0, 3y/2), (~x/2, 3/4 3y), (3/8 ~x, 7/8 ~y), (29/64 3x, 15/16 3y) etc., for 
k,~ = 1, 2, 3, 4, respectively. The predicted coordinate location approaches the 
location of (�89 3y) as km is increased and the convergence rate toward this value 
is great. The predicted location with the first order, second order, and third order 
explicit approximations are, respectively, (0, �89 (0, 3y), and (~x ,  ~y), and are 
approaching the vicinity of the location (�89 ~y) with the increasing order of 
the approximation. In order to aid in comparison, these data and those of 
the proposed second order implicit scheme are presented in Figure 1. Implied 
from these data is that the order of the explicit approximations must be high 
if the pitch error of simulated flow with a curved path is to be held small. 
Thus, the test particle path in the four cell cluster generated with explicit 
approximations of any practical finite order of accuracy would show a helical 
pathline which eventually must intersect one of the four bounding walls of the 
four cell cluster. However, this difficulty does not result with the second order 
implicit procedure if km is taken at an appropriate value. As a result, Eqs. (4) are 
adequate for the illustration of steady flows. For the prediction of the particle 
trajectories of simulated unsteady flows, there are two principle sources of errors 
with this method. The first is associated with the time step while the second is 
related to the time plane chosen for the estimation of the interpolated velocity 
components. In the first instance, the fourth and higher order implicit approxi- 
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FI6. 1. Comparison of Explicit and Implicit Procedures for the predicted test particle location 
in one computational cell with flow out the top and in at the right side 8t = 8x/I  u I = 8Y/I v I. 
A = Initial test particle location; o = position of estimated particle location for km = 1, 
2, 3, 4 and oo with the second order implicit scheme; [] position of particle location for explicit 
procedure of order 1, 2 and 3. 

mations can improve this aspect of the computation for ~t ~ (3x/I u 1, 3y/I v I)min, 
but since 3t is usually restrained to one half or less this value for unsteady flow 
simulations, these terms are typically more than two orders of magnitude smaller 
than the leading terms. Thus, these higher order analogs of Eqs. (4) are not 
significantly more accurate than that expressed by Eqs. (4) for practical applications. 

In the second instance, the accuracy may be improved in some circumstances by 
evaluating the interpolated velocity components for predicted location (x, y),~+l 
from the (n 4- 3t) time plane. Such a procedure can be implemented in a straight- 
forward fashion in situations in which the Marker particle display does not enter 
in the velocity predictions. However, in methods like the MAC method when the 
Marker particles are an intricate part of the velocity predictions, the particle 
position predictions and the velocity predictions would have to be iterated. 
(It would be interesting to know, in this case, what impact the foregoing consid- 
erations have for accuracy of MAC calculations involving free surface.) 

To summarize the comparison of the explicit and implicit procedures, the 
primary advantage of the second order implicit procedure, which is approximated 
by Eqs. (4), is that for the same accuracy it is substantially more economical to 
compute and practical to implement than the explicit procedures besides more 
nearly eliminating the pitch errors of curved flow paths. Such results can also be 
shown for the prediction of particle paths in polar coordinates. 
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Finally, a sample test problem is included to show the improvement in the 
fidelity of the Marker particle movement with the proposed implicit iterative 
procedure compared with the first order explicit procedure. The test problem 
involves the bouyantly driven flow of  incompressible fluid in a square two dimen- 
sional cavity for a Raleigh number of 104 and a Prandtl number of  one. The left 
and right wall temperatures are set for all time at equal plus and minus temperature 
differences from the uniform initial bulk temperature, respectively. The fluid state 
is initially quiesent. The top and bottom walls are perfectly insulated and the 
no-slip condition is applied at all surfaces. The simulated flow proceeds through 
a starting transient and after a time a steady clockwise circulation is established. 
Figure 2 shows the results of using the computational method which is presented 
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FIG. 2 T h r e e  m a r k e r  p a r t i c a l  p a t h s  in  a s q u a r e  c a v i t y  p r e d i c t e d  by  the  S t a n d a r d  M e t h o d ;  
A = s t a r t i n g  po in t .  

in Ref. [1]. The principle feature of  this picture is that the three Marker particles 
move helically outward through the prevailing circulation and collide with the 
wall where they stick. Figure 3 shows the path of  the same three Marker particles 
which have been moved with the previously proposed iterative method for the 
same time step. Note that the pitch of  the helix of each particle path is now essen- 
tially zero. Figure 3 is generated with two estimates of the proposed procedure 
(k,, = 2) with the time step at one half the smallest value which moves the fluid 
a cell width. Figure 3 was also generated with six estimates (kin = 6) and no 
distinguishable difference between these results was noted. The plots were generated 
with an SC 4020 plotting machine. 
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FIG. 3. Three marker particle paths in a square cavity predicted by the Proposed Method; 
A = starting point. 

Based upon  the foregoing discussion, it is recommended that  the proposed 
scheme for  the prediction o f  the particle trajectory be considered in applications 
where the use o f  the Lagrangian marker  particle calculations are desired. 
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